
Search Linked Issues-JQL Functions
linkedIssuesFromFilter()

Finds all issues which are linked by specified relation with those found by saved filter.
When is provided then should also be provided.relationDirection relation
When is specified then issues linked to found linked issues are also recursionNumber
considered as a result.

Since version 2.10.0 we added handling in queries.relationDescription

Parameters:

- could be given by name or its id.filter
- is optional and given by name (about relation parameter more information relation

in FAQ section), name of relation (or relation description) must match names that
are set in configuration, by default they start with capital lettersee more
relationDescription avilable since version 2.10.0(about relation description
parameter more information in FAQ section), must match descriptions that are set in
configuration,see more

- optional, have values or (do not provide if you choose relationDirection inward outward
direction by relation description)

- optional, have positive integer values (not supported with relation recursionNumber
description parameter)

Syntax:

linkedIssuesFromFilter(filter)
linkedIssuesFromFilter(filter, relation)
linkedIssuesFromFilter(filter, relation, relationDirection)
linkedIssuesFromFilter(filter, relation, relationDirection, recursionNumber)
linkedIssuesFromFilter(filter, relationDescription)

Examples:
Find all issues linked by any relation to all issues returned by filter myFilter

issue in linkedIssuesFromFilter("myFilter")

Find all issues linked by relation Duplicate to all issues returned by filter myFilter

issue in linkedIssuesFromFilter("myFilter", "Duplicate")

Finds all issues linked by relation Duplicate in direction inward to all issues returned by
filter myFilter

issue in linkedIssuesFromFilter("myFilter", "Duplicate", "inward")
issue in linkedIssuesFromFilter("myFilter", "is duplicated by")

Find all issues linked by relation Duplicate in direction outward to all issues returned by
filter myFilter

issue in linkedIssuesFromFilter("myFilter", "Duplicate", "outward")
issue in linkedIssuesFromFilter("myFilter", "duplicates")

Find all issues linked by any relation to all issues returned by filter with id 102010

issue in linkedIssuesFromFilter("102010")

linkedIssuesFromQuery()

Finds all issues which are linked by specified relation with those found by JQL. Whenrelation
is provided then should also be provided.Direction relation

When is specified then issues linked to found linked issues are also recursionNumber
considered as a result.

Since version 2.10.0 we added handling in queries.relationDescription

List of JQL Functions:

linkedIssuesFromFilter()
linkedIssuesFromQuery()
parentIssuesFromFilter()
parentIssuesFromQuery()
subtaskIssuesFromFilter()
subtaskIssuesFromQuery()
numberOfLinkedIssuesFromQue
ry()
numberOfLinkedIssuesFromFil
ter()
having...()
epicsFromFilter()
epicsFromQuery()
epicsWithIssue()
epicsWithoutIssue()

https://confluence.atlassian.com/display/JIRA/Configuring+Issue+Linking
https://confluence.atlassian.com/display/JIRA/Configuring+Issue+Linking

Parameters:

- could be given by JQL queryJQL
 -relation is optional and given by name (about relation parameter more information

in FAQ section), name of relation (or relation description) must match names that
are set in configuration, by default they start with capital lettersee more
relationDescriptionavilable since version 2.10.0(about relation description
parameter more information in FAQ section), must match descriptions that are set in
configuration,see more
relationDirection- optional, have values or (do not provide if you choose inward outward
direction by relation description)
recursionNumber- optional, have positive integer values (not supported with relation
description parameter)

Syntax:

linkedIssuesFromQuery(JQL)
linkedIssuesFromQuery(JQL, relation)
linkedIssuesFromQuery(JQL, relation, relationDirection)
linkedIssuesFromQuery(JQL, relation, relationDirection, recursionNumber)
linkedIssuesFromQuery(JQL, relationDescription)

Examples:
Find all issues linked by any relation to all issues returned by JQL

issue in linkedIssuesFromQuery("project = DEMO AND issuetype = BUG")

Find all issues linked by relation Blocks to all issues returned by query issuekey >= X

issue in linkedIssuesFromQuery("issuekey >= X", "Blocks")

Find all issues linked by relation Blocks in direction inward to all issues returned by JQL

issue in linkedIssuesFromQuery("project = DEMO AND issuetype = BUG", "Blocks"
, "inward")
issue in linkedIssuesFromQuery("project = DEMO AND issuetype = BUG", "is
blocked by")

Find all issues linked by relation Blocks in direction outward to all issues returned by JQL

issue in linkedIssuesFromQuery("project = DEMO AND issuetype = BUG", "Blocks"
, "outward")
issue in linkedIssuesFromQuery("project = DEMO AND issuetype = BUG", "blocks"
)

Find all Y and Z, when X is blocked by Y and Y is blocked by Z? (Recursive lookup)

issue in linkedIssuesFromQuery("issuekey = X", "Blocks", "inward", 2)

You have issues DEMO-1 cloned by DEMO-2, DEMO-2 cloned by DEMO-3, DEMO-3 cloned by DEMO-4.
Finds issues clones DEMO-1 for only 2 recursive lookup, then JIRA will return DEMO-2, and
DEMO-3

issue in linkedIssuesFromQuery("issuekey = DEMO-1", "Cloners", inward, 2)

You have issues DEMO-1 duplicated by DEMO-2, DEMO-2 duplicated by DEMO-3, DEMO-3 duplicated
by DEMO-4. Finds issues duplicats DEMO-1 for only 3 recursive lookup, then JIRA will return
DEMO-2, DEMO-3 and DEMO-4.

issue in linkedIssuesFromQuery("issuekey = DEMO-1", "Duplicate", inward, 3)

parentIssuesFromFilter()

https://confluence.atlassian.com/display/JIRA/Configuring+Issue+Linking
https://confluence.atlassian.com/display/JIRA/Configuring+Issue+Linking

Finds all issues which are parents of subtasks issues selected by specified saved filter.

Parameters:

- could be given by name or its id.filter

Syntax:

parentIssuesFromFilter(filter)

Examples:

Finds all parent issues for all issues returned by filter myFilter

issue in parentIssuesFromFilter("myFilter")

Finds all parent issues for all issues returned by filter with id 102010

issue in parentIssuesFromFilter("102010")

parentIssuesFromQuery()

Finds all issues which are parents of subtasks issues selected by JQL.

Parameters:

- could be given by JQL queryJQL

Syntax:

parentIssuesFromQuery(JQL)

Examples:
Find all parent issues for all issues returned by JQL

issue in parentIssuesFromQuery("project = DEMO AND issuetype = Sub-Task")

subtaskIssuesFromFilter()

Finds all issues which are subtasks of issues selected by specified saved filter

Parameters:

- could be given by name or its id.filter

Syntax:

subtaskIssuesFromFilter(filter)

Examples:
Find all subtask issues for all issues returned by filter myFilter

 issue in subtaskIssuesFromFilter("myFilter")

Find all subtask issues for all issues returned by filter with id 102010

 issue in subtaskIssuesFromFilter("102010")

subtaskIssuesFromQuery()

Finds all issues which are subtasks of issues selected by JQL

Parameters:

JQL- could be given by JQL query

Syntax:

subtaskIssuesFromQuery(JQL)

Examples:
Find all subtask issues for all issues returned by JQL

issue in subtaskIssuesFromQuery("project = DEMO AND issuetype = Task")

numberOfLinkedIssuesFromQuery()

This function is available in 2.5.0 plugin version and later.

Finds all issues which number of linked issue meet a condition. Relation type and direction
is not analyse by function so all linked issues are proceeded to check condition. Query has
three required parameters.

Parameters:

- JQL query to analyse.JQL
- available symbols mathematicalSymbol ==, <=, !=, >=, >, <
- number of linked issuesnumberOfLinkedIssues

Syntax:

numberOfLinkedIssuesFromQuery(JQL, mathematicalSymbol, numberOfLinkedIssues)

Examples:
Finds all linked issues from DEMO project which contain more than two linked issues.

issue in linkedIssuesFromQuery("project = DEMO",">","2")

numberOfLinkedIssuesFromFilter()

This function is available in 2.5.0 plugin version and later.

Finds all issues which number of linked issue meet a condition. Relation type and direction
is not analyse by function so all linked issues are proceeded to check condition. Query has
three required parameters.

Parameters:

- could be given by name or its id.filter
- available symbols mathematicalSymbol ==, <=, !=, >=, >, <
- number of linked issuesnumberOfLinkedIssues

Syntax:

numberOfLinkedIssuesFromQuery(filter, mathematicalSymbol,
numberOfLinkedIssues)

Examples:
Finds all linked issues returned by myFilter which contain less than three linked issues.

issue in linkedIssuesFromQuery("myFilter","<","3")

Finds all linked issues returned by 102011 filter id which contain exacly one linked issue.

issue in linkedIssuesFromQuery("102011","==","1")

having...()

This function is available in 2.4.0 plugin version and later.

Since version 2.10.0 we added handling in queries.relationDescription
All the above functions have their counterparts:having...

havingLinkedIssuesFromQuery(...),

havingLinkedIssuesFromFilter(...),

havingSubtaskIssuesFromQuery(...),

havingSubtaskIssuesFromFilter(...),

havingParentIssuesFromQuery(...),

havingParentIssuesFromFilter(...).

Those functions do the same task as the previously-existing functions, but return not the
link 'targets', but .link 'sources' that generated the targets is havingXXXX("subquery")
equivalent to:reversedXXX("") and subquery, (where is a subquery which matches all ""
the issues).

For example:

issue in havingSubtaskIssuesFromQuery("text ~ linux")

returns those issues which are parents of some subtask issues, and containlinux text
somewhere. This is equivalent to (but faster than) this query:

issue in parentIssuesFromQuery("") and text ~ linux

Note that this is not the same as query:

issue in parentIssuesFromQuery("text ~ linux")

which returns parent issues of subtask issues containinglinux(returned parents themselves
don't have to contain).linux

Similarly other queries work.having...

epicsFromFilter()

This function is available in 2.9.0 version plugin version and later.

This function is available only with JIRA Software.

Function will return all that where assigned to issues returned by given parametEpics filter
er.

Function allows you to discover all that where used in your issue set. In this case Epics
issue set is defined as .filter

Parameters:

filter- could be given by name or its id.

Syntax:

epicsFromFilter(filter)

Examples:

issue in epicsFromFilter("testowy")

epicsFromQuery()

This function is available in 2.9.0 version plugin version and later.

This function is available only with JIRA Software.

Function will return all that where assigned to issues returned by given parameter.Epics query

Function allows you to discover all that where used in your issue set. In this case Epics
issue set is defined as .query

Parameters:

JQL- could be given by JQL query

Syntax:

epicsFromQuery(JQL)

Examples:

issue in epicsFromQuery("project = TEST")

epicsWithIssue()

This function is available in 2.9.0 version plugin version and later.

This function is available only with JIRA Software.

Function will returned all that have at least one issue assigned. Function will search Epics
for all in your JIRA instance.Epics

Parameters: no

Syntax:

epicsWithIssue()

Examples:

issue in epicsWithIssue()

epicsWithoutIssue()

This function is available in 2.9.0 version plugin version and later.

This function is available only with JIRA Software.

Function will returned all that have no issues assigned. Function will check all in Epics Epics
your JIRA instance.

Parameters: no

Syntax:

epicsWithoutIssue()

Example:

issue in epicsWithoutIssue()

	Search Linked Issues-JQL Functions

