Search Linked |ssues—JQL Functions

| inked|ssuesFromFilter ()

Finds all issues which are linked by specified relation with those found by saved filter.
WhenrelationDirectionis provided thenrelationshould also be provided
WhenrecursionNumberis specified then issues linked to found |inked issues are also
considered as a result

Since version 2.10.0 we added relationDescription handling in queries
Parameters:

* filter— could be given by name or its id

® relation— is optional and given by name (about relation parameter more information
in FAQ section), name of relation (or relation description) must match names that
are set in configuration, by default they start with capital lettersee more

* relationDescription avilable since version 2.10.0 (about relation description
parameter more information in FAQ section), must match descriptions that are set in
configuration, see more

* relationDirection— optional, have valuesinwardoroutward(do not provide if you choose
direction by relation description)

* recursionNumber— optional, have positive integer values (not supported with relation
description parameter)

Syntax:

l'i nkedl ssuesFronFilter(filter)

l'i nkedl ssuesFronFilter(filter, relation)
l'i nkedl ssuesFronFilter(filter, relation, relationDirection)
l'i nkedl ssuesFronFilter(filter, relation, relationDirection, recursionNunber)

I'i nkedl ssuesFronFilter(filter, relationDescription)

Examples:

Find all issues linked by any relation to all issues returned by filter myFilter

issue in |linkedlssuesFronFilter("nyFilter")

Find all issues linked by relation Duplicate to all issues returned by filter myFilter

issue in |inkedlssuesFronFilter("nyFilter", "Duplicate")

Finds all issues linked by relation Duplicate in direction inward to all issues returned by

filter myFilter

issue in |linkedl ssuesFronFilter("nyFilter",
issue in |inkedl ssuesFronfFilter("nyFilter",

"Duplicate", "inward")
"is duplicated by")

Find all issues linked by relation Duplicate in direction outward to all issues returned by

filter myFilter

issue in |linkedl ssuesFronFilter("nyFilter",
issue in |linkedl ssuesFronFilter("nyFilter",

"Duplicate",
"duplicates")

"out ward")

Find all issues linked by any relation to all issues returned by filter with id 102010

issue in |linkedl ssuesFronfilter("102010")

| inkedlssuesFromQuery ()

Finds all issues which are linked by specified relation with those found by JQL. Whenrelation
Directionis provided thenrelationshould also be provided

WhenrecursionNumberis specified then issues linked to found |inked issues are also

considered as a result

Since version 2.10.0 we added relationDescription handling in queries

List of

JAL Functions:

| inked | ssuesFromFilter ()

| inked | ssuesFromQuery ()
parent|ssuesFromFilter ()
parent|ssuesFromQuery ()
subtask|ssuesFromFilter ()
subtask|ssuesFromQuery ()
numberO0fL inked|ssuesFromQue

ry ()
numberOfLinked|ssuesFromFil
ter ()

having... ()

epicsFromFilter ()
epicsFromQuery ()
epicsWithlssue ()
epicsWithoutlssue ()

https://confluence.atlassian.com/display/JIRA/Configuring+Issue+Linking
https://confluence.atlassian.com/display/JIRA/Configuring+Issue+Linking

Parameters:

® JQL- could be given by JQL query

* relation —is optional and given by name (about relation parameter more information
in FAQ section), name of relation (or relation description) must match names that
are set in configuration, by default they start with capital lettersee more

* relationDescriptionavilable since version 2.10.0(about relation description
parameter more information in FAQ section), must match descriptions that are set in
configuration, see more

* relationDirection— optional, have valuesinwardoroutward(do not provide if you choose
direction by relation description)

* recursionNumber— optional, have positive integer values (not supported with relation
description parameter)

Syntax:

I'i nkedl ssuesFromQuery(JQ.)

I'i nkedl ssuesFromQuery(JQ., relation)

l'i nkedl ssuesFromQuery(JQ., relation, relationDirection)

I'i nkedl ssuesFromQuery(JQ., relation, relationDirection, recursionNurber)
I'i nkedl ssuesFromQuery(JQ., relationDescription)

Examples:
Find all issues linked by any relation to all issues returned by JQL

i ssue in linkedl ssuesFronfuery("project = DEMO AND i ssuetype = BUG')

Find all issues linked by relation Blocks to all issues returned by query issuekey >= X
i ssue in linkedl ssuesFronfuery("issuekey >= X", "Bl ocks")
Find all issues linked by relation Blocks in direction inward to all issues returned by JGL

i ssue in |inkedl ssuesFronfuery("project = DEMO AND i ssuetype = BUG', "Bl ocks"
, "inward")

i ssue in linkedl ssuesFronfuery("project = DEMO AND i ssuetype = BUG',
bl ocked by")

IS

Find all issues linked by relation Blocks in direction outward to all issues returned by JaL

i ssue in |inkedl ssuesFronfuery("project
, "outward")
i ssue in |inkedl ssuesFronfuery("project = DEMO AND i ssuetype = BUG', "bl ocks"

)

DEMO AND i ssuetype = BUG', "Bl ocks"

Find all Y and Z, when X is blocked by Y and Y is blocked by Z? (Recursive lookup)

i ssue in |inkedl ssuesFronuery("issuekey = X', "Blocks", "inward", 2)

You have issues DEMO-1 cloned by DEMO-2, DEMO-2 cloned by DEM0-3, DEM0-3 cloned by DEMO-4.
Finds issues clones DEMO-1 for only 2 recursive lookup, then JIRA will return DEMO-2, and
DEMO-3

issue in linkedl ssuesFromuery("issuekey = DEMO-1", "C oners", inward, 2)

You have issues DEMO-1 duplicated by DEM0-2, DEMO-2 duplicated by DEM0-3, DEM0-3 duplicated
by DEMO-4. Finds issues duplicats DEMO-1 for only 3 recursive lookup, then JIRA will return
DEMO-2, DEMO-3 and DEMO—4.

issue in linkedl ssuesFromuery("issuekey = DEMO-1", "Duplicate", inward, 3)

parent | ssuesFromFilter ()

https://confluence.atlassian.com/display/JIRA/Configuring+Issue+Linking
https://confluence.atlassian.com/display/JIRA/Configuring+Issue+Linking

Finds all issues which are parents of subtasks issues selected by specified saved filter.
Parameters:

* filter— could be given by name or its id

Syntax:
parent|ssuesFronFilter(filter)

Examples:

Finds all parent issues for all issues returned by filter myFilter

issue in parentlssuesFronFilter("nyFilter")

Finds all parent issues for all issues returned by filter with id 102010

i ssue in parentlssuesFronfilter("102010")

parent | ssuesFromQuery ()
Finds all issues which are parents of subtasks issues selected by JQL
Parameters:

® JQL- could be given by JQL query

Syntax:

par ent | ssuesFromQuery(JQ.)

Examples:
Find all parent issues for all issues returned by JQL

i ssue in parentlssuesFronQuery("project = DEMO AND i ssuetype = Sub- Task")

subtask|ssuesFromFilter ()
Finds all issues which are subtasks of issues selected by specified saved filter
Parameters:

* filter— could be given by name or its id

Syntax:

subt askl ssuesFronFilter(filter)

Examples:
Find all subtask issues for all issues returned by filter myFilter

i ssue in subtasklssuesFronFilter("nyFilter")

Find all subtask issues for all issues returned by filter with id 102010

i ssue in subtasklssuesFronfilter("102010")

subtask|ssuesFromQuery ()
Finds all issues which are subtasks of issues selected by JGL
Parameters:

® JOL- could be given by JQL query

Syntax:
subt askl ssuesFronmQuer y(JQL)

Examples:
Find all subtask issues for all issues returned by JQGL

i ssue in subtasklssuesFronQuery("project = DEMO AND i ssuetype = Task")

numberOfL inked | ssuesFromQuery ()
This function is available in 2.5.0 plugin version and later.
Finds all issues which number of |inked issue meet a condition. Relation type and direction

is not analyse by function so all linked issues are proceeded to check condition. Query has
three required parameters

Parameters:

* JOL- JQL query to analyse
* mathematicalSymbol- available symbols ==, <= I!= >= > <
* numberOfLinkedlssues— number of linked issues

Syntax:
nunber O Li nkedl ssuesFronfuery(JQL, nmat hemati cal Synbol, nunber O Li nkedl ssues)

Examples:
Finds all linked issues from DEMO project which contain more than two |inked issues

i ssue in |inkedl ssuesFronQuery("project = DEMJ',">", "2")

numberOfL inked|ssuesFromFilter ()

This function is available in 2.5.0 plugin version and later.
Finds all issues which number of |inked issue meet a condition. Relation type and direction
is not analyse by function so all linked issues are proceeded to check condition. Query has
three required parameters
Parameters:

* filter- could be given by name or its id

* mathematicalSymbol—- available symbols ==, <=, I= >= > <
¢ numberOfLinkedlssues— number of linked issues

Syntax:

nunber O Li nkedl ssuesFronuery(filter, mathematical Synbol,
nunber O Li nkedl ssues)

Examples:
Finds all linked issues returned by myFilter which contain less than three |linked issues

i ssue in linkedl ssuesFronuery("nyFilter","<","3")

Finds all linked issues returned by 102011 filter id which contain exacly one |inked issue

issue in |linkedl ssuesFromuery("102011", "==","1")

having. .. ()
This function is available in 2.4.0 plugin version and later.

Since version 2.10.0 we added relationDescription handling in queries.
All the above functions have their having... counterparts:

havi ngLi nkedl ssuesFronfuery(...)

havi ngLi nkedl ssuesFronFilter(...)

havi ngSubt askl ssuesFromQuery(...),

havi ngSubt askl ssuesFronFilter(...),

havi ngPar ent | ssuesFronQuery(...),

havi ngParent | ssuesFronFilter(...)

Those functions do the same task as the previously—existing functions, but return not the
link "targets', but link 'sources' that generated the targets. havi ngXXXX("subquery") is

equivalent to:reversedXXX("") and subquery, (where""is a subquery which matches all
the issues).

For example:

i ssue in havi ngSubt askl ssuesFronQuery("text ~ |inux")

returns those issues which are parents of some subtask issues, and containl i nux text
somewhere. This is equivalent to (but faster than) this query:

issue in parentlssuesFromuery("") and text ~ |inux
Note that this is not the same as query:
issue in parentlssuesFromQuery("text ~ |inux")

which returns parent issues of subtask issues containinglinux(returned parents themselves
don't have to containl i nux).

Similarly otherhavi ng. .. queries work.

epicsFromFilter ()
This function is available in 2.9.0 version plugin version and later.
This function is available only with JIRA Software.

Function will return all Epics that where assigned to issues returned by given filter paramet
er.

Function allows you to discover all Epics that where used in your issue set. In this case
issue set is defined as filter.

Parameters:

* filter— could be given by name or its id.

Syntax:

epi csFronFilter(filter)

Examples:

issue in epicsFronFilter("testow")

epicsFromQuery ()

This function is available in 2.9.0 version plugin version and later.
This function is available only with JIRA Software
Function will return all Epics that where assigned to issues returned by givenqueryparameter.

Function allows you to discover all Epics that where used in your issue set. In this case
issue set is defined asquery

Parameters:

®* JQL- could be given by JQL query
Syntax:
epi csFromuery(JQL)
Examples:

issue in epicsFromQuery("project = TEST")

epicsWithlssue ()

This function is available in 2.9.0 version plugin version and later.
This function is available only with JIRA Software

Function will returned all Epics that have at least one issue assigned. Function will search
for all Epics in your JIRA instance

Parameters: no

Syntax:

epi csWt hl ssue()

Examples:

issue in epicsWthlssue()

epicsWithoutlssue ()

This function is available in 2.9.0 version plugin version and later.
This function is available only with JIRA Software

Function will returned allEpicsthat have no issues assigned. Function will check allEpicsin
your JIRA instance

Parameters: no

Syntax:
epi csWt hout | ssue()
Example:

i ssue in epicsWthoutlssue()

	Search Linked Issues-JQL Functions

